手机浏览器扫描二维码访问
“别走!”拉塞尔教授大声叫住程诺,来都来了,还岂能让你溜了。我的那点颜面,可都全指望你了。
他笑吟吟的道,“这位先生,从外表来看,我就觉得你有学习数学的天分。我认识一位朋友,有天纵之资,便师从菲涅尔教授,我觉得,有机会的话,你也可以辞去服务员的身份,去麻省理工学院求师菲涅尔教授。”
“我想你的未来,一定会想菲涅尔教授那位学生一样,对吧?只可惜,我的那位朋友没来到这届大会,有机会的话,可以让你们认识一下。”
程诺面色一黑。
拉塞尔教授这是在威胁自己啊,一旦他不帮忙救场,就会将程诺的身份公之于众。
殊不知,就算程诺救场话,这里他也待不下去了。
程诺的目光对视上台上拉塞尔教授笑眯眯的眼神,嘴角轻轻一弯。
既然如此,那便如你所愿。只不过,希望你不要后悔才好。
程诺倒不着急了,慢悠悠的走回原本的座位,笑着开口,“学生这里确实有一处疑惑,需要拉塞尔先生的解答。”
拉塞尔面色一缓,轻松的道,“请讲。”
二十多位观众也是竖起耳朵,看看这位服务生究竟能问出什么“高深”的问题。
程诺脑海里过了一遍拉塞尔演讲的内容,淡淡一笑,“通过研究定义于有限域fq上的代数簇x的zeta函数zx(t)和ζx(s),在曲线和阿贝尔簇的情况下,zx(t)满足两个性质:
1:zx(t)是有理函数
2:满足函数方程
我用这一句话来概括拉塞尔教授讲座的内容,应该没有问题吧?”
在二十多位或不解,或疑惑的目光中,拉塞尔教授缓缓点头。
“不错,可以这样理解。”拉塞尔早就见识过程诺的实力,因此对他一句话总结,倒没有任何的惊讶。
“请继续。”拉塞尔示意程诺。
程诺颔首,继续说道,“前半部分的内容,我是比较认同的,但是对于zx(t)满足的性质,我有不同的观点。”
“除了zx(t)是有理函数和满足函数方程外,我个人认为,还有另一个性质——zx(t)函数的零点,有某种特性的形式!”
“零点有某种特定的形式?”拉塞尔教授嘀咕一句,思考了一两秒中,抬头问道,“你为什么这么认为?”
程诺抬抬手,示意拉塞尔教授稍安勿躁,“等我讲完再解释。”
“除了上面那处疑惑外,我还有和拉塞尔先生另一个不同的观点。讲座中是说,上面的两个,呃,暂且算是三个,那三个性质只适用于曲线和阿贝尔簇两种情况下。”
“那这个勉强算是定理的东西,适用的条件太过于苛刻,实用性几乎为零。但如果我们把这个定理扩展到整个非奇异代数簇的zata函数上,那普遍性和实用价值大大提高。那……”
“不可能!”拉塞尔教授直接打断了程诺。
“这三个性质的得出,是依靠研究有限域fq上的代数簇x的zeta函数zx(t)和ζx(s),对应的就是曲线和阿尔贝簇,怎么能得出一个普遍性的结论出来?”拉塞尔教授大声道。
程诺语气不急不缓,“没验证过,怎么知道不能?”
“那你证明出来了?”拉塞尔问。“没有理论依据,就不要做这种异想天开的假设!”
程诺耸肩,咧嘴笑道,“不巧,我还真证明出来了。”
我有一座英雄联盟学院 我公子扶苏,请始皇退位! 他的小祖宗爱吃糖 史上第一帅神 不朽神王 王者立海大 天生就会跑 海贼:无限极品抽奖 神话:在青蛇中修炼遮天法 人在木叶,慌得一批 魔鬼的惩罚 快穿之宿主她总翻车 美漫之阿斯加德的战神 盛唐风月 身为学长的我被六傲娇少女捉弄 超神术士 谁还没个后台 洪荒二郎传 我!万古最强天骄 漫威世界的御主
关于萌宝来袭霸总爹地俏妈咪她一时兴起想借种生子,但她万万没想到自己会借到陆少的头上!一夜过后,她抹掉一切痕迹,桃之夭夭。五年后,她带着儿子回国。哪知狭路相逢,儿子和陆少对上了,争执不休。她在...
重生过去畅想未来梦幻现实,再塑传奇人生!如果您喜欢巨星从综艺主持人开始,别忘记分享给朋友...
大闺女,娘,爹这样的渣男,休了就是赚到了!二闺女,渣男贱女天生一对,娘成全他们,在一旁看戏,机智!三闺女,娘,天下英豪何其多,渣爹这颗歪脖子树配不上你。小儿子,渣爹学谁不好,偏偏学陈世美杀妻抛子,史无前例的渣。腰中别菜刀,心中有菜谱的柳茹月点点头,孩儿们说得对!我们的目标是齐,休了那个陈世美!PS这是一篇美食文,女主自立自强,主打温情向。架空世界,不要纠结菠菜番茄土豆向日葵等番外菜是什么时候进入中原滴,谢谢!430万字完结老书炮灰大作战,欢迎大家去看哦!农门娘子有点彪也马上完结了哦!如果您喜欢休了那个陈世美,别忘记分享给朋友...
别人做上门女婿是去当牛做马,江小白却是去做大爷的,与丈母娘斗其乐无穷,与老婆斗其乐无穷,且看江小白如何脚踩婆家,拳打强敌,恣意纵横畅快人生如果您喜欢虎婿,别忘记分享给朋友...
财务自由的人类高质量男性徐小天穿越异世,成为天玄仙门中最年轻的长老,并获得收徒就变强的天道气运反哺系统,从此走上一条调教气运之子的不归路。如果您喜欢我的弟子都是气运之子,别忘记分享给朋友...
朝廷北庭王,魔殿之殿主。一代魔殿殿主的传奇之路。如果您喜欢魔殿殿主,别忘记分享给朋友...