手机浏览器扫描二维码访问
336章
如果cl2公式的求解并非必要条件的话,那么,后续的推导过程,未尝不能做进一步的优化……
灵感这玩意儿,就像爱情一样,说来就来!
无数的想法在程诺的脑海里碰撞,闪现。
而他竭力想做的,就是努力抓住那一闪而逝的灵光。
eisensteseries理论?对,就是这个东西!
程诺脑海里突然冒出这个词汇,然后他整个人便因为激动而身躯有些微微颤抖。
什么是全纯维数1中的eisenste级数关于非全纯情况?简单来讲,它其实是一个特别的模形带着无穷级数可以直接写入的扩展,最初的定义是一个模群。
一般来讲,放任t做一个复数严格肯定虚部。定义全纯eisenste级数g2k(t)重量2k,在哪里k≥2是一个整数,是由以下系列组成:
g2k(?)=∑1(+n?)2k
本系列绝对收敛的全纯函数t在。上半平面下面给出的fourier展开式表明,它扩展到了一个全纯函数,?=i∞
听起来挺复杂的,事实是……这个东西确实异常晦涩难懂。
程诺也是在一本讨论“全纯维数1中的eisenste级数关于非全纯情况”中书籍中,才系统而又全面的了解到关于这方面的知识。
当时恰巧这个eisensteseries理论和弱bsd猜想的证明工作看似存在一些擦边的关系,不过在前人数学家关于bsd猜想的研究中,并未有人提过这两者到底存在何种关系。
不过本着有备无患的心态,程诺还是把这个知识点记到了脑子里。
没想到,竟然还真有能用到的时候。
有了灵感,程诺的思维立刻发散开来。
“模群的任意全纯模形式都可以写成多项式。g4和g6。特别是高阶g2k可以用g4和g6通过递归关系。放任dk=(2k+3)k!g2k+4例如,d0=3g4和d1=5g6。然后dk满足关系∑(n,k)=2n+93n+6……”
“定义q=e2πit,g2k(?)=2λ(2k)(1+……”
“……bn是bernoulli数,ζ(z)是黎曼zeta函数和σp(n)是除数和函数的总和p,然后,然后……”
脑子运算速度快不够用了。
程诺随手拿起一张空白的草稿纸,一个个公式跃然于纸上。
处于极度兴奋状态他,已经忘记了时间,忘记了疲惫,满眼中,只剩下那逐渐推向真相的数学公式。
今晚,对程诺来说,绝对是一个不眠夜。
同时,在bsd猜想研究的漫长历史长河中,这也是足以被记录在史册的一夜!
…………
清晨六点四十五分。
窗外远处的天空中渐渐升起一抹鱼肚白。
天生就会跑 漫威世界的御主 超神术士 快穿之宿主她总翻车 他的小祖宗爱吃糖 王者立海大 盛唐风月 不朽神王 谁还没个后台 人在木叶,慌得一批 魔鬼的惩罚 海贼:无限极品抽奖 美漫之阿斯加德的战神 史上第一帅神 我有一座英雄联盟学院 身为学长的我被六傲娇少女捉弄 神话:在青蛇中修炼遮天法 我公子扶苏,请始皇退位! 洪荒二郎传 我!万古最强天骄
关于萌宝来袭霸总爹地俏妈咪她一时兴起想借种生子,但她万万没想到自己会借到陆少的头上!一夜过后,她抹掉一切痕迹,桃之夭夭。五年后,她带着儿子回国。哪知狭路相逢,儿子和陆少对上了,争执不休。她在...
重生过去畅想未来梦幻现实,再塑传奇人生!如果您喜欢巨星从综艺主持人开始,别忘记分享给朋友...
大闺女,娘,爹这样的渣男,休了就是赚到了!二闺女,渣男贱女天生一对,娘成全他们,在一旁看戏,机智!三闺女,娘,天下英豪何其多,渣爹这颗歪脖子树配不上你。小儿子,渣爹学谁不好,偏偏学陈世美杀妻抛子,史无前例的渣。腰中别菜刀,心中有菜谱的柳茹月点点头,孩儿们说得对!我们的目标是齐,休了那个陈世美!PS这是一篇美食文,女主自立自强,主打温情向。架空世界,不要纠结菠菜番茄土豆向日葵等番外菜是什么时候进入中原滴,谢谢!430万字完结老书炮灰大作战,欢迎大家去看哦!农门娘子有点彪也马上完结了哦!如果您喜欢休了那个陈世美,别忘记分享给朋友...
别人做上门女婿是去当牛做马,江小白却是去做大爷的,与丈母娘斗其乐无穷,与老婆斗其乐无穷,且看江小白如何脚踩婆家,拳打强敌,恣意纵横畅快人生如果您喜欢虎婿,别忘记分享给朋友...
财务自由的人类高质量男性徐小天穿越异世,成为天玄仙门中最年轻的长老,并获得收徒就变强的天道气运反哺系统,从此走上一条调教气运之子的不归路。如果您喜欢我的弟子都是气运之子,别忘记分享给朋友...
朝廷北庭王,魔殿之殿主。一代魔殿殿主的传奇之路。如果您喜欢魔殿殿主,别忘记分享给朋友...